Elimination of the concentration dependence in mass isotopomer abundance mass spectrometry of methyl palmitate using metastable atom bombardment.
نویسندگان
چکیده
An important problem in mass isotopomer abundance mass spectrometry (MIAMS) is the dependence of measured mass isotopomer abundances on sample concentration. We have evaluated the role of ionization energy on mass isotopomer abundance ratios of methyl palmitate as a function of sample concentration. Ionization energy was varied using electron impact ionization (EI) and metastable atom bombardment (MAB). The latter generates a beam of metastable species capable of ionizing analyte molecules by Penning ionization. We observed that ionization of methyl palmitate by EI (70 eV) showed the greatest molecular ion fragmentation and also showed the greatest dependence of relative isotopomer abundance ratios on sample concentration. Ionization using the 3P2 and 3P0 states of metastable krypton (9.92 and 10.56 eV, respectively) resulted in almost no molecular ion fragmentation, and the isotopomer abundances quantified were essentially independent of sample concentration. Ionization using the 3P2 and 3P0 states of metastable argon (11.55 and 11.72 eV, respectively) showed molecular ion fragmentation intermediate between that of EI and MAB(Kr) and showed an isotopomer concentration dependence which was less severe than that observed with EI but more severe than that observed with MAB(Kr). The observed decrease in the dependence of isotopomer abundance on sample concentration with a decrease in molecular ion fragmentation is consistent with the hypothesis that proton transfer from a fragment cation to a neutral molecule is the gas phase reaction mechanism responsible for the concentration dependence. Alternative explanations, e.g., hydrogen abstraction from a neutral molecule to a molecular cation, is not supported by these results. Moreover, the MAB ionization technique shows potential for eliminating one source of error in MIAMS measurements of methyl palmitate, in particular, and of fatty acids methyl esters, in general.
منابع مشابه
Molecular ion fragmentation and its effects on mass isotopomer abundances of fatty acid methyl esters ionized by electron impact.
We have analyzed the isotopomer abundance ratios of an equimolar mixture of nine fatty acid methyl esters (decanoate, undecanoate, laurate, tridecanoate, myristate, pentadecanoate, palmitate, heptadecanoate, and stearate) by selected-ion monitoring gas chromatography/electron impact/mass spectrometry (GC/EI/MS). The abundance of the second lowest m/z isotopomer (IM1) increased disproportionatel...
متن کاملFAST ATOM BOMBARDMENT MASS SPECTROMETRY (FABMS) ANALYSIS OF AN N- TERMINAL - BLOCKED PEPTIDE
FABMS analysis of T-lb peptide before and after one cycle of Edman degradation indicated an unblocked N-terminal Thr residue for this tryptic peptide. In contrast , our data showed a molecular protonated ion, MH + for T- la peptide at 655 mass units (mu) which is 42 mu higher than the MH ion of T- 1b peptide. In addition, T- la peptide was not amenable to one cycle of manual Edman degrada...
متن کاملFast atom bombardment combined with mass spectrometry for characterization of polycyclic aromatic hydrocarbons.
A new approach using fast atom bombardment combined with mass spectrometry to characterize polycyclic aromatic hydrocarbons (PAHs) in the range of 128-252 u molecular weight is described. Sulfolane was employed as a liquid matrix for these π-conjugated hydrocarbons. Bombardment of sulfolane solution of certain PAHs with an atom beam produces both radical cation (M(+.)) and protonated molecule [...
متن کاملTetrahydromethanopterin, a carbon carrier in methanogenesis.
Evidence obtained by 13C NMR spectroscopy indicates that tetrahydromethanopterin (H4MPT) serves as a carbon carrier for C1 units at the methine, methylene, and methyl levels of oxidation. All three derivatives of H4MPT served as substrates for methanogenesis by cell extracts under a hydrogen atmosphere; in each instance, methane evolved at a rate comparable to that obtained when 2-(methylthio)e...
متن کاملStructure of the quinone antibiotic EM5519 and the behavior of quinones in fast atom bombardment mass spectrometry.
Fast atom bombardment (FAB) mass and MS/MS spectra of a novel quinone antibiotic are presented. Their interpretation is based upon the examination of reductive behavior of model quinones in FAB solvents.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society for Mass Spectrometry
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2001